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Background & Motivation
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Figure 1. LLM batched inference

* LLMinference in Heterogeneous system

As depicted In Figure 1, batched Large Language
Model (LLM) inference comprises both compute-
Intensive General Matrix Multiplication (GEMM)
operations (blue blocks) and memory-intensive
General Matrix-Vector (GEMV) operations (green
blocks). PIM-PU Heterogeneous systems, integrating
a NPU or GPU for efficient GEMM and PIM for high

iInternal bandwidth to handle memory-intensive
workloads, can effectively accelerate LLM inference.
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Figure 2. DRAM and PIM architecture
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Figure 3. LLM batched inference flow in a

heterogeneous system
As illustrated in Figure 2, both DRAM read operations
and PIM's MAC operations share bank resources,

including local I/O wires, row buffers, and sense

amplifiers. This resource contention prevents them =

from operating concurrently. Such a limitation poses
a significant constraint on recently proposed
techniques like sub-batching for concurrent
execution (as shown in Figure 3(b)), where resource
conflicts permit the simultaneous operation of the
PU and PIM.
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Figure 4. Overview of LLM process and timeline
in BSPIM
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Figure 7. Normalized performance of NPU-only, conventional NPU-PIM, NeuPIMs and BSPIM with batch sizes
of 64, 128, 256, 512 and 1024. Evaluated with various Models: GPT3-7B, GPT3-30B, GPT3-175B, Llama3.1-70B
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Figure 5. A Bank Architecture of BSPIM

* Bank-Split PIM (BSPIM) Architecture

The Bank-Split PIM (BSPIM) architecture addresses
the resource conflict by splitting a single DRAM bank
Into two Independent partitions, each with its own
dedicated Local I/0O wires. Each partition has own |/O
Sense Amplifier, enabling simultaneous operation
shown in Figure 4(a): the PIM partition can perform
MAC operations while the DRAM partition
concurrently handles read requested by the host.

In Figure 5, BSPIM allocates QKV data to be stored in
the PIM partition (below the switching logic) and
processed by the MAC unit. Concurrently, the DRAM

partition (above the switching logic) can read
necessary weights for the PU.
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Figure 6. PBO operation

* Partial Batch Offloading (PBO)

To maximize PIM utilization and balance workloads in
heterogeneous systems, BSPIM implements Partial
Batch Offloading (PBO). When PIM is idle during
GEMM-heavy workloads, it offloads operations by
concurrently receiving broadcast weights from the
PU and processing them. Conversely, if the PU is idle
during GEMV-heavy workloads, PIM simultaneously
performs MAC operations and transfers QKV data to
the PU for MHA execution. BSPIM runtime scheduler
dynamically profiles PU and PIM latencies to
determine optimal offload batch sizes, ensuring
balanced execution throughout inference.
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Experimental Result

I BSPIM NeuPIMs

Batch = 256

\: NeuPIMs
Batch = 128

- BSPIM]
Batch = 512

1.4 ] |

170 170 70
1.2] ~ - 7

50 :I/ 50 I I 50

130 130 30
0.8 - :

-10 — | I -10 _ I I

<O L O S

9
,\9 ’19 >

PIM Utilization [%]

-
o

& ARy
"

Figure 8. Normalized performance and PIM
utilization following different input sequence lengths
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* Performance and Utilization

Figure 7 compares normalized speedups of BSPIM
against an NPU-only baseline, a conventional NPU-
PIM design, and the NeuPIMs state-of-the-art across
GPT3 and Llama3.1 model. BSPIM delivers up to 7.3 X
acceleration on GPI3-/B and consistently
outperforms NeuPIMs by around 20% on average
across all batch sizes and model scales.

Figure 8 evaluates the Impact of Input segquence
length on throughput and PIM utilization across three
batch sizes (128, 256, 512). As sequence length
Increases, both BSPIM and NeuPIMs demonstrate
performance gains. However, BSPIM consistently
achieves substantially higher PIM utilization from
under 20% at short sequences to over 70% at length
2000 which attributed to its ability to overlap read
and compute operations.

1 NeuPIMs B BSPIM-PBO —&— BSPIM
1 BSPIM NeuPIMs —&— BSPIM-PBO
100
1.50 A _ o
o 80 .BE.
% 1.25 - - 60 .
9 1.00 : 40 S5
W =
sl mil B 8
0.50 . , 0

04 128 256 512 1024 Gmean

Figure 9. Normalized speedup and PIM utilization
when adopting Partial Batch Oftloading (PBO)

* Impact of PBO on performance and utilization
Figure 13 Iisolates the benefit of Partial Batch
Offloading by comparing BSPIM with and without
PBO to NeuPIMs on GPT3-30B. With PBO enabled,
BSPIM achieves an additional 1.45x speedup at
batch 1024 and boosts PIM utilization by up to 28%,
confirming that offloading partial batch to idle device
effectively mitigates imbalances and keeps both
devices busy.
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