
Redefining PIM Architecture with Compact and
Power-Efficient Microscaling

Yoonho Jang∗, Hyeongjun Cho†, Seokin Hong∗
∗Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea

†Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, Korea
{jyh8807, cho0624ck, seokin}@skku.edu

Abstract—With advances in neural network technology,
Processing-In-Memory (PIM) has emerged as a solution to per-
formance bottlenecks between processors and memory. Among
various PIM design techniques, integrating processing units
within memory banks has demonstrated high performance in
accelerating neural network models. However, prior architectures
based on this approach have required sacrificing a large portion
of the cell array to accommodate complex floating-point pro-
cessing units. In this paper, we propose a new architecture that
incorporates a unique quantization technique called microscaling.
This technique efficiently converts high-precision data to integer
types with minimal accuracy loss during model inference. By
adopting microscaling, we reduce the processing unit overhead by
replacing floating-point units with integer-based ones. As a result,
our approach achieves a 50% reduction in area while maintaining
equivalent performance and reduces energy consumption to
approximately 70% of that in prior architectures.

I. INTRODUCTION

In the past decade, Deep Neural Networks (DNNs) have be-
come a foundational technique in artificial intelligence, driven
by advances in computing performance. As computers process
increasingly large datasets at high speeds, DNN models have
become complex, containing vast weight parameters. This
growth has led to a significant memory traffic bottleneck,
where the speed of data movement lags behind the processor’s
speed, causing performance stalls—commonly known as the
memory wall. Addressing this memory wall has become a
critical challenge in accelerating DNN workloads across most
computing systems.

Processing-In-Memory (PIM) is a promising solution to the
memory wall challenge, aiming to reduce data movement. By
enabling simple data computations within or near the memory
die, PIM minimizes the volume of data transferred to the
processors [1, 2]. Leveraging this advantage, leading memory
manufacturers such as Samsung and Hynix have developed
their own PIM architectures by integrating processing units
directly into memory banks [3, 4]. This approach maximizes
internal memory bandwidth, making them a state-of-the-art
technique for accelerating large DNN models, including Large
Language Models (LLMs).

However, both architectures suffer from area and energy
consumption due to the need to support floating-point preci-
sion. Unlike simpler integer units, floating-point computation
units demand many logic gates because of their complex
computational steps. Both architectures reduce the memory
cell by 50% to place them in the memory bank, which

incurs permanent capacity loss [4, 5]. Unfortunately, prior
research has not replaced these units with integer-based ones,
as many LLM workloads require high-precision computation
while classification models can often successfully quantize
weight parameters to integer types. Since the goal is to
accelerate LLMs, reducing the complexity of the processing
units conflicts with these precision requirements.

To address this issue, we leverage a unique quantization
technique called microscaling [6]. This technique converts
FP32 data into 4 to 8-bit precision, including integer types,
without compromising the accuracy of DNN model inference.
The quantization process involves a straightforward dataset
alignment corresponding its largest value. Modifying the ar-
chitecture to replace floating-point units with integer types and
integrating alignment logic effectively reduces overhead and
enables data type conversion without host intervention.

We evaluate our approach by implementing it on the base-
line architecture from prior research and conducting a compar-
ative analysis. Our modifications achieve a 50% reduction in
area overhead without compromising performance and nearly
a 70% reduction in energy consumption.

II. BACKGROUND & MOTIVATION

A. DRAM organization

It is essential to review the DRAM organization first to
understand PIM architectures, as shown in Figure 1. A DRAM
device consists of several DRAM dies, with one or more dies
forming a memory channel. Each DRAM channel operates
independently, using its dedicated I/O bus without relying on
other channels. A channel comprises multiple banks, which
serve as independent units of operation. Each bank contains
a two-dimensional array of memory cells and a hierarchical
sense amplifier called the row buffer. Upon receiving a row
index, the row decoder activates the corresponding row about
row index, transferring its data into the row buffer. The row
buffer amplifies the charge of memory cells in an activated
row during read operations. It also temporarily stores this data
before enabling access to other rows within the same bank.
Users can retrieve data from the activated row by selecting
columns through the column decoder.

B. PU-based PIM architectures

The PU-based PIM architecture integrates processing units
directly within or near memory banks, allowing operands

20
25

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

le
ct

ro
ni

cs
, I

nf
or

m
at

io
n,

 a
nd

 C
om

m
un

ic
at

io
n

(IC
EI

C)
 |

 9
79

-8
-3

31
5-

10
75

-6
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

EI
C6

49
72

.2
02

5.
10

87
97

42

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on September 02,2025 at 07:49:24 UTC from IEEE Xplore. Restrictions apply.

Channel

B
a
n

k

B
a
n

k

B
a
n

k

B
a
n

k

D
ieUser

Cell Array

Row buffer

Row

index

Col

index

Fig. 1: DRAM Organization

to move from memory cells to the processing units without
involving an external I/O bus. This approach significantly
reduces data movement latency and boosts throughput by
enabling all memory banks to operate concurrently, like SIMD
processing. With these advantages, PU-based PIM has become
the state-of-the-art architecture for PIM systems, and represen-
tative memory manufacturers have adopted it for commercial
use, as shown in Figure 2.

Cell Array

Row buffer

Adder Tree

G
lo

b
a

l
B

u
ff
e

r

Multi Multi• • •

Cell Array

Row buffer

Multi Multi• • •

Adder Adder• • •C
o

n
tr

o
l

(a) Newton (b) HBM-PIM

R
e

g
is

te
r

Another Bank

Fig. 2: A bank of PU-based PIM architectures
Newton employs multipliers and an adder tree to accelerate

the Multiply-and-Accumulate (MAC) operations fundamen-
tal to General Matrix-Vector Multiplication (GEMV). Each
memory bank in Newton contains dedicated processing units,
which deliver exceptional performance, particularly in speed-
ing up Large Language Models (LLMs). HBM-PIM features
a similar architecture to Newton, but pairs a single processing
unit—independent multipliers and adders—between two mem-
ory banks. These independent processing units enable support
for a broader range of operations beyond GEMV, adding flex-
ibility for handling DNN workloads. As a result, both Newton
and HBM-PIM effectively accelerate DNN computations.

C. Overhead of Floating Point

Both architectures support floating-point precision oper-
ations, which result in considerable area overhead. Many
large Language Models (LLMs) use floating-point weight
parameters such as FP32, FP16, and BF16. These formats can
represent a wide range of values, improving model accuracy
during inference. However, as shown in Table I, the Arithmetic
Logic Units (ALUs) for these precisions are significantly
larger than those for integer types, particularly INT8, which is
commonly used in Deep Neural Network (DNN) workloads.
Replacing current floating-point units with integer-based units
can substantially reduce area overhead.

Unfortunately, replacing floating-point units in PU-based
PIM architectures with integer-based units poses significant
challenges, primarily due to the accuracy degradation as-
sociated with integer quantization. Quantization reduces the
precision of weight parameters, thereby lowering the size of
weight storage and alleviating hardware overhead in process-
ing units. While many classification models successfully apply
this technique with minimal accuracy loss, in LLMs like GPT-
3 or Llama-3, quantization is difficult due to the vast number

of parameters and layers, where accuracy degradation occurs
with each layer, making it impractical. As prior PU-based PIM
research aimed to accelerate LLM, this trial does not match
their goal.

TABLE I: The gate counts for each ALU and the number
of ALUs in a processing unit. We use the Synopsys Design
Compiler with a 22nm technology library [7]. The total
size of the ALUs within a processing unit is determined by
multiplying the gate count by the number of ALUs.

Technique Newton HBM-PIM
INT

Precision BF16 FP16
Counts gate unit gate unit gate
Multi 431 16 695 16 349 (INT8)
Adder 427 32 324 16 82 (INT16)

D. Mircoscaling
We adopt a microscaling quantization technique in both

architectures to address this challenge. Algorithm 1 illustrates
how this technique reduces the bit size, providing a clearer
understanding of the process [6]. The core concept of mi-
croscaling is aligning the mantissa with the largest exponential
value in the block, a portion of the dataset, called the shared
exponent. Since the exponent plays a dominant role in rep-
resenting values in floating-point formats, this technique pre-
serves the accuracy of high-precision models by focusing on
the most significant weight parameters. Microscaling reduces
FP32 data to 4 to 8-bit precision, including the MXINT8 type,
which converts operands with INT8 type. By utilizing this
approach, microscaling enables the replacement of floating-
point units with integer units in PU-based PIM architectures,
thereby significantly reducing the area overhead associated
with processing units.

Algorithm 1 MXINT8 Scaling Algorithm

1: Input: Dataset V , block size k
2: max exponential ← exponent of the largest element in

the data format
3: shared exp← log2(max(V))−max exponential
4: X ← 2shared exp

5: for i← 1 to k do
6: Pi ← Vi

X
7: end for
8: Output: X,P

III. OVERVIEW OF RE-DESIGNING ARCHITECTURE

In this section, we present the overall concept of our
approach, covering both prior architectures. For clarity, we
base our architecture on a 256-bit prefetch size, commonly
used in modern memory products such as HBM2, HBM2E,
and LPDDR5 [8]. This configuration builds on prior PU-based
PIM designs. The choice is straightforward, as it aligns with
the configuration of HBM-PIM and shares the same prefetch
size that serves as the foundation for Newton [3, 9].

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on September 02,2025 at 07:49:24 UTC from IEEE Xplore. Restrictions apply.

A. Architecture

Figure 3 illustrates the modified architectures incorporating
microscaling. As shown in the figure, the design employs an
aligner to quantize bit precision from the original type within
the memory bank. Further details on this process are provided
in the following subsection. By placing the quantization unit
before the processing units, they receive operands in MXINT8
format rather than floating-point, allowing both architectures
to replace the multiplier and adder with integer-based units
effectively.

In Newton, an additional aligner positioned beneath the
adder tree converts results back to BF16 precision. The
shared exponent the aligner generates passes through the
multiplier and adder tree in lock-step with the operands to
achieve this. This process ensures that GEMV processing
maintains accuracy when handling consecutive columns as
separate quantization blocks. In contrast, HBM-PIM uses a
dedicated aligner for each computation step. Since HBM-
PIM supports simultaneous multiplication and addition during
GEMV processing, the aligner must differentiate between
new input blocks and the intermediate multiplication results
entering the adder. One aligner quantizes the input block,
while the other aligns the accumulation’s multiplication results
and partial sums. Additionally, they back the results of the
operation to an original FP16 precision like Newton.

Cell Array

Row buffer

Adder Tree

G
lo

b
a

l
B

u
ff
e

r

Multi Multi• • •

Cell Array

Row buffer

Multi Multi• • •

Adder Adder• • •

C
o

n
tr

o
l

(a) Newton (b) HBM-PIM

R
e

g
is

te
r

Aligner

Aligner

Aligner

Register

Shared exp

•
•
•

•
•
•

•
•
•

• • •

• • •

Aligner

Shared exp

Aligner

Shared exp

• • • • • •

Fig. 3: A bank of modified PU-based PIM architectures

B. Microscaling Aligner

For MXINT8 scaling, the microscaling aligner identifies the
most prominent exponent in a block of data and shifts the man-
tissa bits of operands within that block accordingly. We drew
inspiration from Newton’s adder tree architecture to implement
this approach. In Newton, the architecture aligns multiplication
results with the most significant value using the exponent bits
before starting accumulation while performing actual floating-
point operations. This method efficiently reduces the number
of accumulation cycles by skipping alignment steps at each
accumulation stage, resulting in minimal accuracy loss. Fig-
ure 4 shows the modified aligner based on this approach. We
set the block size for microscaling to 32 operands, matching
the prefetch size (16 times the number of operands in a
prefetch). Additionally, Newton reduces the complexity of

the original aligner in its adder tree by placing the proposed
aligner in front of the multiplier, simplifying hardware and
allowing data quantization without external intervention. This
optimized design not only enhances processing efficiency but
also minimizes hardware complexity.

Exp Comparator Exp ComparatorExp Comparator

Shifter Shared ExpShifter• • • Shifter Shifter• • •
- offset - offset

16b x 16 opernads 16b x 16 opernads

man. man. man. man.

MXINT8 MXINT8 MXINT8 MXINT8Shared Exp

Fig. 4: An architecture of aligner

IV. EVALUATION

A. Methodology

We evaluate our approach using a variety of DNN work-
loads, specifically targeting PIM architectures. We select trans-
former based models that demand high performance in GEMV
processing due to their large number of fully-connected layers.
In addition, we include some classification models, such as
CNNs, in our evaluation. While CNNs are not primarily
memory-intensive, their last layer is fully-connected, making
it relevant for our testing. Therefore, we also apply our
evaluation to the final layer of these CNN models. The specific
size of workloads are provided in Table II.

TABLE II: Workloads

Workload GEMV size Type
BERTs1 1K x 1K Transfomer

based
models

BERTs2 1K x 4K
ViT 3072 x 768

ResNet50 1K x 2K
CNN

VGG16 4K x 4K

We use Ramulator, an open-source DRAM cycle simula-
tor [10, 11]. We modify the simulator to implement both
our benchmark and proposed approach. We select Newton as
the baseline for the evaluation benchmark, given its dedicated
architecture and significant speed in GEMV processing. Thus,
our evaluation is based on the Newton architecture. We use the
8Gb-2000 HBM2 memory configuration for both architectures,
as detailed in Table III. We reference the timing parameters
and power information for this memory configuration from the
JEDEC standard [8].

TABLE III: Configuration

HBM2 Configuration
Channel & Rank 8 channels & 1 rank per channel

Bank group & Bank 4 per channel & 4 per bank group
Row size & Prefetch 1KB & 256-bit

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on September 02,2025 at 07:49:24 UTC from IEEE Xplore. Restrictions apply.

BER
Ts1

BER
Ts2 ViT

ResN
ET

50
VGG16

Gmea
n

0.0

0.5

1.0

1.5

Sp
ee

du
p

Newton Newton-M

Fig. 5: Normalized speed per area

BER
Ts1

BER
Ts2 ViT

ResN
ET

50
VGG16

Gmea
n

0.0

0.5

1.0

En
er

gy
 c

on
su

m
pt

io
n Newton Newton-M

Fig. 6: Normalized energy consumption

B. Performance

Figure 5 presents the evaluation results, showing the ratio of
processing time to the processing unit area. We designed and
modified the baseline Newton architecture using the Synopsys
Design Compiler, detailed in Table I (Although Newton uses
BF16 precision, the adder tree consists of INT16 adders, as
discussed in Section III-A). As expected, the overall perfor-
mance remains comparable to the original Newton architecture
despite replacing the floating-point units with integer-based
units. This is because we assume each processing unit follows
the tCCD timing parameter, even though its critical path
is slightly faster. Additionally, since the number of ALUs
remains the same to match the prefetch size, there is no
improvement in throughput. However, thanks to the smaller
size of integer units, particularly the adders, our approach
reduces the processing unit size by 50%, as illustrated in the
figure.

C. Energy Consumption

The simpler design of integer processing units allows for
a significant reduction in energy consumption. Figure 6 com-
pares the energy consumption of the processing units in each
architecture, normalized against Newton’s results. Floating-
point multipliers involve complex operations, such as com-
paring exponent values and using large buffers for mantissa
multiplication and shifting logic for alignment. In contrast,
integer multiplication only requires fixed-point logic, resulting
in lower energy consumption. Although the aligner in our
approach consumes slightly more energy than Newton’s, the
overall energy efficiency of the processing unit improves by
nearly 70%.

V. CONCLUSION

This paper presents a modified PU-based PIM architec-
ture designed to reduce the overhead of processing units.
We integrate the microscaling quantization technique, which
efficiently converts high-precision data to INT8 with minimal
accuracy loss. To implement this technique, we introduce

additional hardware that aligns the dataset with the largest
exponent value. As a result, our approach reduces the area
overhead by 50% and energy consumption by 70% compared
to prior architectures.

ACKNOWLEDGMENT

This work was partly supported by the National Research
Foundation of Korea (NRF) grant (No.2022R1C1C1012154,
50%), Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.2021-0-00863, Intelligent in-memory
error correction device for high-reliability memory, 25%) and
the Competency Development Program for Industry Special-
ists of the Korean Ministry of Trade, Industry and Energy
(MOTIE), operated by Korea Institute for Advancement of
Technology (KIAT) (No. P0023704, 25%). Seokin Hong is
the corresponding author.

REFERENCES
[1] S.-S. Park, K. Kim, J. So, J. Jung, J. Lee, K. Woo, N. Kim, Y. Lee,

H. Kim, Y. Kwon, J. Kim, J. Lee, Y. Cho, Y. Tai, J. Cho, H. Song, J. H.
Ahn, and N. S. Kim, “An lpddr-based cxl-pnm platform for tco-efficient
inference of transformer-based large language models,” in 2024 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2024, pp. 970–982.

[2] F. Devaux, “The true processing in memory accelerator,” in 2019
IEEE Hot Chips 31 Symposium (HCS). Los Alamitos, CA, USA:
IEEE Computer Society, aug 2019, pp. 1–24. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/HOTCHIPS.2019.8875680

[3] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thot-
tethodi, and T. N. Vijaykumar, “Newton: A dram-maker’s accelerator-in-
memory (aim) architecture for machine learning,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2020, pp. 372–385.

[4] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn, and
N. S. Kim, “Hardware architecture and software stack for pim based on
commercial dram technology : Industrial product,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 43–56.

[5] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim, J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin,
J. Won, M. Lee, H. Joo, H. Choi, J. Lee, D. Ko, Y. Jun, K. Cho,
I. Kim, C. Song, C. Jeong, D. Kwon, J. Jang, I. Park, J. Chun,
and J. Cho, “A 1ynm 1.25v 8gb, 16gb/s/pin gddr6-based accelerator-
in-memory supporting 1tflops mac operation and various activation
functions for deep-learning applications,” in 2022 IEEE International
Solid-State Circuits Conference (ISSCC), vol. 65, 2022, pp. 1–3.

[6] B. D. Rouhani, R. Zhao, A. More, M. Hall, A. Khodamoradi,
S. Deng, D. Choudhary, M. Cornea, E. Dellinger, K. Denolf, S. Dusan,
V. Elango, M. Golub, A. Heinecke, P. James-Roxby, D. Jani,
G. Kolhe, M. Langhammer, A. Li, L. Melnick, M. Mesmakhosroshahi,
A. Rodriguez, M. Schulte, R. Shafipour, L. Shao, M. Siu, P. Dubey,
P. Micikevicius, M. Naumov, C. Verrilli, R. Wittig, D. Burger, and
E. Chung, “Microscaling data formats for deep learning,” 2023.
[Online]. Available: https://arxiv.org/abs/2310.10537

[7] Synopsys, “Synopsys design compiler,” https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/dc-ultra.html.

[8] JEDEC, “High bandwidth memory dram (hbm1, hbm2),” https://www.
jedec.org/sites/default/files/docs/JESD235D.pdf, 2021.

[9] J. H. Kim, S.-H. Kang, S. Lee, H. Kim, Y. Ro, S. Lee, D. Wang, J. Choi,
J. So, Y. Cho, J. Song, J. Cho, K. Sohn, and N. S. Kim, “Aquabolt-xl
hbm2-pim, lpddr5-pim with in-memory processing, and axdimm with
acceleration buffer,” IEEE Micro, vol. 42, no. 3, pp. 20–30, 2022.

[10] S. R. Group, “Ramulator: A dram simulator,” https://github.com/CMU-
SAFARI/ramulator, 2015.

[11] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1,
pp. 45–49, 2016.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on September 02,2025 at 07:49:24 UTC from IEEE Xplore. Restrictions apply.

